ABSTRACT
Cytogenetics and molecular genetics play an important role in the diagnosis of soft
tissue and bone mesenchymal tumors. This update focuses on cytogenetic and molecular
genetic techniques commonly used for evaluation of mesenchymal tumors, including karyotyping,
fluorescent in situ hybridization, and polymerase chain reaction. Examples of different
techniques, inherent technical problems, and interpretation of the results are discussed.
Additionally, limitations related to the type of material available for genotyping
(fresh, frozen, or formalin-fixed paraffin-embedded tissue) are covered. Cytogenetic
and molecular genetic alterations identified in various mesenchymal tumors are often
valuable for diagnosis, prognosis, and treatment strategies.
KEYWORDS
Sarcoma - genetics - karyotyping - FISH - PCR
REFERENCES
- 1 Cooper G M. Oncogenes. 2nd ed. Boston; Jones and Bartlett Publishers International
1995
- 2
Petit M M, Swarts S, Bridge J A et al..
Expression of reciprocal fusion transcripts of the HMGIC and LPP genes in parosteal
lipoma.
Cancer Genet Cytogenet.
1998;
106
18-23
- 3
Rogalla P, Kazimierczak B, Meyer-Bolte K et al..
The t(3;12)(q27;q14-q15) with underlying HMGIC-LPP fusion is not determining an adipocytic
phenotype.
Genes Chromosomes Cancer.
1998;
22
100-104
- 4
Petit M M, Mols R, Schoenmakers E F et al..
LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family.
Genomics.
1996;
36
118-129
- 5
Petit M M, Schoenmakers E F, Huysmans C et al..
LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new
family of LHFP-like genes.
Genomics.
1999;
57
438-441
- 6
Broberg K, Zhang M, Strombeck B et al..
Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving
2q35-37and 12q13-15.
Int J Oncol.
2002;
21
321-326
- 7
Kazmierczak B, Dal Cin P, Wanschura S et al..
Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal
tumors.
Am J Pathol.
1998;
152
431-435
- 8
Ballaux F, Debiec-Rychter M, De Wever I et al..
Chondroid lipoma is characterized by t(11;16)(q13;p12-13).
Virchows Arch.
2004;
444
208-210
- 9
Sandberg A A.
Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors:
lipoma.
Cancer Genet Cytogenet.
2004;
150
93-115
- 10
Meloni A M, Spanier S S, Bush C H et al..
Involvement of 10q22 and 11q13 in hibernoma.
Cancer Genet Cytogenet.
1994;
72
59-64
- 11
Mertens F, Rydholm A, Brosjö O et al..
Hibernomas are characterized by rearrangements of chromosome bands 11q13-21.
Int J Cancer.
1994;
58
503-505
- 12
Mrózek K, Karakousis C P, Bloomfield C D.
Band 11q13 in nonrandomly rearranged in hibernomas.
Genes Chromosomes Cancer.
1994;
9
145-147
- 13
Gisselsson D, Höglund M, Mertens F et al..
Hibernomas are characterized by homozygous deletions in the multiple endocrine neoplasia
type I region. Metaphase fluorescence in situ hybridization reveals complex rearrangements
not detected by conventional cytogenetics.
Am J Pathol.
1999;
155
61-66
- 14
Maire G, Forus A, Foa C et al..
11q13 alterations in two cases of hibernoma: large heterozygous deletions and rearrangement
breakpoints near GARP in 11q13.5
Genes Chromosomes Cancer.
2003;
37
389-395
- 15
Turaga K K, Silva-Lopez E, Sanger W G et al..
A (9;11)(q34;q13) translocation in hibernoma.
Cancer Genet Cytogenet.
2006;
170
163-166
- 16
Astrom A, D'Amore E S, Sainati L et al..
Evidence of involvement of the PLAG1 gene in lipoblastomas.
Int J Oncol.
2000;
16
1107-1110
- 17
Hibbard M K, Kozakewich H P, Dal Cin P et al..
PLAG1 fusion oncogenes in lipoblastoma.
Cancer Res.
2000;
60
4869-4872
- 18
Gisselsson D, Hibbard M K, Dal Cin P et al..
PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and
evidence for alternative oncogenic mechanisms.
Am J Pathol.
2001;
159
955-962
- 19
Sciot R, De Wever I, Debiec-Rychter M.
Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using
cytogenetic and fluorescence in-situ hybridization analysis.
Virchows Arch.
2003;
442
468-471
- 20
Schoenmakers E F, Huysmans C, van de Ven W J.
Allelic knockout of novel splice variants of human recombination repair gene RAD51B
in t(12;14) uterine leiomyomas.
Cancer Res.
1999;
59
19-23
- 21
Moore S D, Herrick S R, Ince T A et al..
Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF.
Cancer Res.
2004;
64
5570-5577
- 22
Kurose K, Mine N, Doi D et al..
Novel gene fusion COX6C at 8q22-23 to HMGIC at 12q15 in a uterine leiomyoma.
Genes Chromosomes Cancer.
2000;
27
303-307
- 23
Mine N, Kurose K, Konishi H et al..
Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma.
Jpn J Cancer Res.
2001;
92
135-139
- 24
Kazmierczak B, Hennig Y, Wanschura S et al..
Description of a novel fusion transcript between HMGI-C, a gene encoding for a member
of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase
gene.
Cancer Res.
1995;
55
6038-6039
- 25
Kazmierczak B, Pohnke Y, Bullerdiek J.
Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations.
Genomics.
1996;
38
223-226
- 26
Nucci M R, Weremowicz S, Neskey D M et al..
Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive
angiomyxoma of the vulva.
Genes Chromosomes Cancer.
2001;
32
172-176
- 27
Micci F, Panagopoulos I, Bjerkehagen B et al..
Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15).
Virchows Arch.
2006;
448
838-842
- 28
Rabban J T, Dal Cin P, Oliva E.
HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma.
J Gynecol Pathol.
2006;
25
403-407
- 29
Tallini G, Dorfman H, Brys P et al..
Correlation between clinicopathological features and karyotype in 100 cartilaginous
and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative
Study Group.
J Pathol.
2002;
196
194-203
- 30
Dahlen A, Mertens F, Rydholm A et al..
Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas.
Mod Pathol.
2003;
16
1132-1140
- 31
Rogalla P, Lemke I, Kazmierczak B et al..
An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid
hamartomas with t(3;12)(q27-28;q14-15).
Genes Chromosomes Cancer.
2000;
29
363-366
- 32
Blank C, Schoenmakers E F, Rogalla P et al..
Intragenic breakpoint within RAD51L1 in a t(6;14)(p21.3;q24) of a pulmonary chondroid
hamartoma.
Cytogenet Cell Genet.
2001;
95
17-19
- 33
Lemke I, Rogalla P, Bullerdiek J.
A novel LPP fusion gene indicates the crucial role of truncated LPP proteins in lipomas
and pulmonary chondroid hamartomas.
Cytogenet Cell Genet.
2001;
95
153-156
- 34
Lemke I, Rogalla P, Grundmann F et al..
Expression of the HMGA2-LPP fusion transcript in only 1 of 61 karyotypically normal
pulmonary chondroid hamartomas.
Cancer Genet Cytogenet.
2002;
138
160-164
- 35
Von Ahsen I, Rogalla P, Bullerdiek J.
Expression patterns of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas
with t(13;12)(q27 approximately 28;q14 approximately 15).
Cancer Genet Cytogenet.
2005;
163
68-70
- 36
Halbert A R, Harrison W R, Hicks M J et al..
Cytogenetic analysis of a scapular chondromyxoid fibroma.
Cancer Genet Cytogenet.
1998;
104
52-56
- 37
Granter S R, Renshaw A A, Kozakewich H P et al..
The pericentromeric inversion, inv (6)(p25q13), is a novel diagnostic marker in chondromyxoid
fibroma.
Mod Pathol.
1998;
11
1071-1074
- 38
Safar A, Nelson M, Neff J R et al..
Recurrent anomalies of 6q25 in chondromyxoid fibroma.
Hum Pathol.
2000;
31
306-311
- 39
Smith C A, Magenis R E, Himoe E et al..
Chondromyxoid fibroma of the nasal cavity with an interstitial insertion between chromosomes
6 and 19.
Cancer Genet Cytogenet.
2006;
171
97-100
- 40
Baruffi M R, Volpon J B, Neto J B et al..
Osteoid osteomas with chromosome alterations involving 22q.
Cancer Genet Cytogenet.
2001;
124
127-131
- 41
Nilsson M, Domanski H A, Mertens F et al..
Molecular cytogenetic characterization of recurrent translocation breakpoints in bizarre
parosteal osteochondromatous proliferation (Nora's lesion).
Hum Pathol.
2004;
35
1063-1069
- 42
Endo M, Hasegawa T, Tashiro T et al..
Bizarre parosteal osteochondromatous proliferation with a t(1;17) translocation.
Virchows Arch.
2005;
447
99-102
- 43
Storlazzi C T, Wozniak A, Panagopoulos I et al..
Rearrangement of the COL12A1 and COL4A5 genes in subungual exostosis: molecular cytogenetic
delineation of the tumor-specific translocation t(X;6)(q13-14,q22).
Int J Cancer.
2006;
118
1972-1976
- 44
Oliveira A M, Perez-Atayde A R, Inwards C Y et al..
USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts
and are absent in so-called secondary aneurysmal bone cysts.
Am J Pathol.
2004;
165
1773-1780
- 45
Oliveira A M, His B L, Weremowicz S et al..
USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst.
Cancer Res.
2004;
64
1920-1923
- 46
Oliveira A M, Perez-Atayde A R, Dal Cin P et al..
Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter
swapping with the ZNF9, COL1A1, TRAP150, and OMD genes.
Oncogene.
2005;
24
3419-3426
- 47
West R B, Rubin B P, Miller M A et al..
A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression
by a translocation in a minority of tumor cells.
Proc Natl Acad Sci U S A.
2006;
103
690-695
- 48
Cupp J S, Miller M A, Montgomery K D et al..
Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial
giant cell tumor, rheumatoid arthritis and reactive synovitides.
Am J Surg Pathol.
2007;
31
970-976
- 49
Möller E, Mandahl N, Mertens F et al..
Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell
tumors.
Genes Chromosomes Cancer.
2008;
47(1)
21-25
, Epub
- 50
Waters B L, Panagopoulos I, Allen E F.
Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of
the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13
and 16p11.
Cancer Genet Cytogenet.
2000;
121
109-116
- 51
Raddaoui E, Donner L R, Panagopoulos I et al..
Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma.
Diagn Mol Pathol.
2002;
11
157-162
- 52
Antonescu C R, Dal Cin P, Nafa K et al..
EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma.
Genes Chromosomes Cancer.
2007;
46
1051-1060
- 53
Hallor K H, Micci F, Meis-Kindblom J M et al..
Fusion genes in angiomatoid fibrous histiocytoma.
Cancer Lett.
2007;
251
158-163
- 54
Pedeutour F, Simon M P, Minoletti F et al..
Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of
chromosome 17 and 22 sequences.
Cancer Res.
1995;
55
2400-2403
- 55
Pedeutour F, Simon M P, Minoletti F et al..
Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated
chromosome rearrangement.
Cytogenet Cell Genet.
1996;
72
171-174
- 56
Kiuru-Kuhlefelt S, El-Rifai W, Fanburg-Smith J et al..
Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans.
Cytogenet Cell Genet.
2001;
92
192-195
- 57
Simon M P, Pedeutour F, Sirvent N et al..
Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen
gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma.
Nat Genet.
1997;
15
95-98
- 58
Shimizu A, O'Brien K P, Sjoblom T et al..
The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived
growth factor (PDGF) B-chain fusion gene generates a transforming protein that is
processed to functional PDGF-BB.
Cancer Res.
1999;
59
3719-3723
- 59
Simon M P, Navarro M, Roux D et al..
Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by
the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP).
Oncogene.
2001;
20
2965-2975
- 60
O'Brien K P, Seroussi E, Dal Cin P et al..
Various regions within the alpha-helical domain of the COL1A1 gene are fused to the
second exon of the PDGFB gene in dermatofibrosarcomas protuberans and giant cell fibroblastomas.
Genes Chromosomes Cancer.
1998;
23
187-193
- 61
Sirvent N, Maire G, Pedeutour F.
Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes
to tyrosine kinase inhibitor treatment.
Genes Chromosomes Cancer.
2003;
37
1-19
- 62
Sandberg A A, Bridge J A.
Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors:
dermatofibrosarcoma protuberans and giant cell fibroblastoma.
Cancer Genet Cytogenet.
2003;
140
1-12
- 63
Nakanishi G, Lin S N, Asagoe K et al..
A novel fusion gene of collagen type I alpha 1 (exon 31) and platelet-derived growth
factor B-chain (exon 2) in dermatofibrosarcoma protuberans.
Eur J Dermatol.
2007;
17
217-219
- 64
Storlazzi C T, Mertens F, Nascimento A et al..
Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma.
Hum Mol Genet.
2003;
12
2349-2358
- 65
Reid R, de Silva M V, Paterson L et al..
Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes
share a common t(7;16)(q34;p11).
Am J Surg Pathol.
2003;
27
1229-1236
- 66
Panagopoulos I, Storlazzi C T, Fletcher C D et al..
The chimeric FUS/CREB312 gene is specific for low-grade fibromyxoid sarcoma.
Genes Chromosomes Cancer.
2004;
40
218-228
- 67
Mertens F, Fletcher C D, Antonescu C R et al..
Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid
sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene.
Lab Invest.
2005;
85
408-415
- 68
Guillou L, Benhattar J, Gengler C et al..
Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular
analysis of a series expanding the morphologic spectrum and suggesting potential relationship
to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group.
Am J Surg Pathol.
2007;
31
1387-1402
- 69
Knezevich S R, McFadden D E, Tao W et al..
A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma.
Nat Genet.
1998;
18
184-187
- 70
Knezevich S R, Garnett M J, Pysher T J et al..
ETV6-NTRK3 gene fusion and trisomy 11 established a histogenetic link between mesoblastic
nephroma and congenital fibrosarcoma.
Cancer Res.
1998;
58
5046-5048
- 71
Rubin B P, Chen C J, Morgan T W et al..
Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion:
cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma.
Am J Pathol.
1998;
153
1451-1458
- 72
Lawrence B, Perez-Atayde A, Hibbard M K et al..
TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors.
Am J Pathol.
2000;
157
377-384
- 73
Bridge J A, Kanamori M, Ma Z et al..
Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic
tumor.
Am J Pathol.
2001;
159
411-415
- 74
Ma Z, Hill D A, Collins M H et al..
Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor.
Genes Chromosomes Cancer.
2003;
37
98-105
- 75
Cools J, Wlodarska I, Somers R et al..
Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in
anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor.
Genes Chromosomes Cancer.
2002;
34
354-362
- 76
Debelenko L V, Arthur D C, Pack S D et al..
Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor.
Lab Invest.
2003;
83
1255-1265
- 77
Debiec-Rychter M, Marynen P, Hagenmeijer A et al..
ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor.
Genes Chromosomes Cancer.
2003;
38
187-190
- 78
Panagopoulos I, Nilsson T, Domanski H A et al..
Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor.
Int J Cancer.
2006;
118
1181-1186
- 79
Mendlick M R, Nelson M, Pickering D et al..
Translocation t(1;3)(p36.3q25) is a nonrandom aberration in epithelioid hemangioendothelioma.
Am J Surg Pathol.
2001;
25
684-687
- 80
He M, Das K, Blacksin M et al..
A translocation involving the placental growth factor gene is identified in an hemangioendothelioma.
Cancer Genet Cytogenet.
2006;
168
150-154
- 81
Koontz J I, Soreng A L, Nucci M et al..
Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors.
Proc Natl Acad Sci U S A.
2001;
98
6348-6353
- 82
Micci F, Panagopoulos I, Bjerkehagen B et al..
Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes
JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas.
Cancer Res.
2006;
66
107-112
- 83
Henn W, Wullich B, Thonnes M et al..
Recurrent t(12;19)(q13;q13.3) in intracranial and extracranial hemangiopericytoma.
Cancer Genet Cytogenet.
1993;
71
151-154
- 84
Clark J, Benjamin H, Gill S et al..
Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily,
in a human myxoid chondrosarcoma.
Oncogene.
1996;
12
229-235
- 85
Labelle Y, Zucman J, Stenman G et al..
Oncogenic conversion of the novel orphan nuclear receptor by chromosome translocation.
Hum Mol Genet.
1995;
4
2219-2226
- 86
Attwooll C, Tariq M, Harris M et al..
Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2)
translocation in an extraskeletal myxoid chondrosarcoma.
Oncogene.
1999;
18
7599-7601
- 87
Sjögren H, Meis-Kindblom J, Kindblom L G et al..
Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma.
Cancer Res.
1999;
59
5064-5067
- 88
Sjögren H, Wedell B, Kindblom J M et al..
Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid
chondrosarcoma with translocation t(9;15)(q22;q21).
Cancer Res.
2000;
60
6832-6835
- 89
Panagopoulos I, Mencinger M, Dietrich C U et al..
Fusion of the RBP56 and CHN genes in extraskeletal myxoid chondrosarcomas with translocation
t(9;17)(q22;q11).
Oncogene.
1999;
18
7594-7598
- 90
Aurias A, Rimbout C, Buffe D et al..
Translocation involving chromosome 22 in Ewing's sarcoma: a cytogenetic study of four
fresh tumors.
Cancer Genet Cytogenet.
1984;
12
21-25
- 91
Turc-Carel C, Philip I, Berger M-P et al..
Chromosomal translocations 11;22 in cell lines of Ewing's sarcoma.
C R Seances Acad Sci III.
1983;
296
1101-1103
- 92
Whang-Peng J, Triche T J, Knutsen T et al..
Chromosome translocation in peripheral neuroepithelioma.
N Engl J Med.
1984;
311
584-585
- 93
Whang-Peng J, Triche T J, Knutsen T et al..
Cytogenetic characterization of selected small round cell tumors of childhood.
Cancer Genet Cytogenet.
1986;
21
185-208
- 94
Delattre O, Zucman J, Plougastel B et al..
Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human
tumors.
Nature.
1992;
359
162-165
- 95
Zucman J, Delattre O, Desmaze C et al..
Cloning and characterization of the Ewing's sarcoma and peripheral neuroepithelioma
t(11;22) translocation breakpoints.
Genes Chromosomes Cancer.
1992;
5
271-277
- 96
Zucman J, Melot T, Desmaze C et al..
Combinatorial generation of variable fusion proteins in Ewing family of tumors.
EMBO J.
1993;
12
4481-4487
- 97
Sorensen P H, Lessnick S L, Lopez-Terrada D et al..
A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family
transcription factor, ERG.
Nat Genet.
1994;
6
146-151
- 98
Jeon I S, Davis J N, Braun B S et al..
A variant Ewing's sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene
ETV1.
Oncogene.
1995;
10
1229-1234
- 99
Kaneko Y, Yoshida K, Handa M et al..
Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation
in an undifferentiated sarcoma of infancy.
Genes Chromosomes Cancer.
1996;
15
115-121
- 100
Peter M, Couturier J, Pacquement H et al..
A new member of the ETS family fused to EWS in Ewing tumors.
Oncogene.
1997;
14
1159-1164
- 101
Mastrangelo T, Modena P, Tornielli S et al..
A novel zinc finger gene is fused to EWS in small round cell tumor.
Oncogene.
2000;
19
3799-3804
- 102
Wang L, Bhargava R, Zheng T et al..
Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification
of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV
fusions.
J Mol Diagn.
2007;
9
498-509
- 103
Ng T L, O'Sullivan M J, Pallen C J et al..
Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS
and FEV.
J Mol Diagn.
2007;
9
459-463
- 104
Shing D C, McMullan D J, Roberts P et al..
FUS/ERG gene fusions in Ewing's tumors.
Cancer Res.
2003;
63
4568-4576
- 105
Douglass E C, Rowe S T, Valentine M et al..
A second nonrandom translocation, der(16)t(1;16)(q21;q13), in Ewing sarcoma and peripheral
neuroectodermal tumor.
Cytogenet Cell Genet.
1990;
53
87-90
- 106
Ladanyi M, Gerald W L.
Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor.
Cancer Res.
1994;
54
2837-2840
- 107
Gerald W L, Rosai J, Ladanyi M.
Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1
gene fusion of desmoplastic small round cell tumor.
Proc Natl Acad Sci U S A.
1995;
14
1028-1032
- 108
Gerald W L, Ladanyi M, de Alava E et al..
Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12):
desmoplastic small-round-cell tumor and its variants.
J Clin Oncol.
1998;
16
3028-3036
- 109
Wolf A N, Ladanyi M, Paull G et al..
The expending clinical spectrum of desmoplastic small round-cell tumor: a report of
two cases with molecular confirmation.
Hum Pathol.
1999;
30
430-435
- 110
Nishio J, Iwasaki H, Ishiguro M et al..
Intra-abdominal small round cell tumour with EWS-WT1 fusion transcript in an elderly patient.
Histopathology.
2003;
42
410-412
- 111
Benjamin L E, Fredericks W J, Barr F G et al..
Fusion of the EWS1 and WT1 genes as a result of the t(11;22)(p13;q12) translocation in desmoplastic small round
cell tumors.
Med Pediatr Oncol.
1996;
27
434-439
- 112
Tison V, Cerasoli S, Morigi F et al..
Intracranial desmoplastic small-cell tumor: report of a case.
Am J Surg Pathol.
1996;
20
112-117
- 113
Barr F G, Galili N, Holick J et al..
Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar
rhabdomyosarcoma.
Nat Genet.
1993;
3
113-117
- 114
Galili N, Davis R J, Fredericks W J et al..
Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma.
Nat Genet.
1993;
5
230-235
- 115
Davis R J, D'Cruz C M, Lovell M A et al..
Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma.
Cancer Res.
1994;
54
2869-2872
- 116
Barr F G.
Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma.
Oncogene.
2001;
20
5736-5746
- 117
Crew A J, Clark J, Fisher C et al..
Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the
Kruppel-associated box in human synovial sarcoma.
EMBO J.
1995;
14
2333-2340
- 118
Fligman I, Lonardo F, Jhanwar S C et al..
Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2
fusion transcript.
Am J Pathol.
1995;
147
1592-1599
- 119
Skytting B, Nilsson G, Brodin B et al..
A novel fusion gene, SYT-SSX4, in synovial sarcoma.
J Natl Cancer Inst.
1999;
91
974-975
- 120
Mancuso T, Mezzelani A, Riva C et al..
Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status
in synovial sarcoma.
Lab Invest.
2000;
80
805-813
- 121
Panagopoulos I, Höglund M, Mertens F et al..
Fusion of EWS and CHOP genes in myxoid liposarcoma.
Oncogene.
1996;
12
489-494
- 122
Crozat A, Åman P, Mandahl N et al..
Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma.
Nature.
1993;
363
640-644
- 123
Rabbitts T H, Forster A, Larson R et al..
Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS
by translocation t(12;16) in malignant liposarcoma.
Nat Genet.
1993;
4
175-180
- 124
Dal-Cin P, Sciot R, Panagopoulos I et al..
Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid
liposarcoma: clinicopathological features.
J Pathol.
1997;
182
437-441
- 125
Joyama S, Ueda T, Shimizu K et al..
Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case
reported and review of the literature.
Cancer.
1999;
86
1246-1250
- 126
Ladanyi M, Lui M Y, Antonescu C R et al..
The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription
factor gene to ASPL, a novel gene at 17q25.
Oncogene.
2001;
20
48-57
- 127
Zucman J, Delattre O, Desmaze C et al..
EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts.
Nat Genet.
1993;
4
341-345
- 128
Panagopoulos I, Mertens F, Debiec-Rychter M et al..
Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses.
Int J Cancer.
2002;
99
560-567
- 129
Speleman F, Delattre O, Peter M et al..
Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation.
Mod Pathol.
1997;
10
496-499
- 130
Antonescu C R, Tschernyavsky S J, Woodruff J M et al..
Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases.
J Mol Diagn.
2002;
4
44-52
- 131
Covinsky M, Gong S, Rajaram V et al..
EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant
melanoma.
Hum Pathol.
2005;
36
74-81
- 132
Antonescu C R, Nafa K, Segal N H et al..
EWS-CREB1: a recurrent variant fusion in clear cell sarcoma-association with gastrointestinal
location and absence of melanocytic differentiation.
Clin Cancer Res.
2006;
12
5356-5362
- 133 Heim S, Mietelman F. Cancer Cytogenetics. Chromosomal and Molecular Genetic Aberrations
of Tumor Cells. New York; Wiley-Liss 1995
- 134 Lasota J.
Genetics of soft tissue tumors. In: Miettinen M Diagnostic Soft Tissue Pathology. Philadelphia; Churchill Livingstone
2003: 99-142
- 135 Pfeifer J D. Molecular Genetic Testing In Surgical Pathology. Philadelphia; Lippincott
Williams & Wilkins 2006
- 136
Kohl N E, Kanda N, Schreck R R et al..
Transposition and amplification of oncogene-related sequences in human neuroblastomas.
Cell.
1983;
35
359-367
- 137
Schwab M, Varmus H E, Bishop J M et al..
Chromosome localization in normal human cells and neuroblastomas of a gene related
to c-myc.
Nature.
1984;
308
288-291
- 138
Brodeur G M, Seeger R C, Schwab M et al..
Amplification of N-myc in untreated human neuroblastomas correlates with advanced
disease stage.
Science.
1984;
224
1121-1124
- 139
Seeger R C, Brodeur G M, Sather H et al..
Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas.
N Engl J Med.
1985;
313
1111-1116
- 140
Brodeur G M, Azar C, Brother M et al..
Neuroblastoma: effect of genetic factors on prognosis and treatment.
Cancer.
1992;
70
1685-1694
- 141
Wolf M, Aaltonen L A, Szymanska J et al..
Complexity of 12q13-22 amplicon in liposarcoma: microsatellite repeat analysis.
Genes Chromosomes Cancer.
1997;
18
66-70
- 142
Berner J M, Forus A, Elkahloun A et al..
Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas.
Genes Chromosomes Cancer.
1996;
17
254-259
- 143
Elkahloun A G, Bittner M, Hoskins K et al..
Molecular cytogenetic characterization and physical mapping of 12q13-15 amplification
in human cancer.
Genes Chromosomes Cancer.
1996;
17
205-214
- 144
Reifenberger G, Ichimura K, Reinferberger G et al..
Refined mapping of 12q13-15 amplicons in human malignant gliomas suggests CDK4/SAS
and MDM2 as independent amplification targets.
Cancer Res.
1996;
56
5141-5145
- 145
Fakharzadeh S S, Trusko S P, George D L.
Tumorigenic potential associated with enhanced expression of a gene that is amplified
in a mouse tumor cell line.
EMBO J.
1991;
10
1565-1569
- 146
Kussie P H, Gorina S, Marechal V et al..
Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation
domain.
Science.
1996;
274
948-953
- 147
Buschmann T, Fuchs S Y, Lee C G et al..
SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability
to ubiquitinate p53.
Cell.
2000;
101
753-762
- 148
Xiao Z X, Chen J, Levine A J et al..
Interaction between the retinoblastoma protein and the oncoprotein MDM2.
Nature.
1995;
375
694-698
- 149
Kanoe H, Nakayama T, Murakami H et al..
Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with
the RB gene mutation.
Anticancer Res.
1998;
18
2317-2321
- 150
Nakayama T, Toguchida J, Wadayama B et al..
MDM2 gene amplification in bone and soft tissue tumors: association with tumor progression
in differentiated adipose tissue tumors.
Int J Cancer.
1995;
64
342-346
- 151
Pedeutour F, Forus A, Coindre J M et al..
Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors.
Genes Chromosomes Cancer.
1999;
24
30-41
- 152
Suijkerbuijk R F, Olde Weghuis D E, Van den Berg M et al..
Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived
amplification units in well differentiated liposarcomas.
Genes Chromosomes Cancer.
1994;
9
292-295
- 153
Szymanska J, Virolainen M, Tarkkanen M et al..
Overrepresentation of 1q21-23 and 12q13-21 in lipoma-like liposarcomas but not in
benign lipomas: a comparative genomic hybridization study.
Cancer Genet Cytogenet.
1997;
99
14-18
- 154
Pilotti S, Della Torre G, Lavarino C et al..
Distinct mdm2/p53 expression patterns in liposarcoma subgroups: implication for different
pathogenetic mechanisms.
J Pathol.
1997;
181
14-24
- 155 Miettinen M Gastrointestinal stromal tumors. Semin Diagn Pathol 2006 23: 61-129
- 156
Cohen Jr M M, Howell R E.
Etiology of fibrous dysplasia and McCune-Albright syndrome.
Int J Oral Maxillofac Surg.
1999;
28
366-371
- 157
Knudson A G.
Mutation and cancer: statistical study of retinoblastoma.
Proc Natl Acad Sci U S A.
1971;
68
820-823
- 158
Kinzler K W, Nilbert M C, Su L-K et al..
Identification of FAP locus genes from chromosome 5q21.
Science.
1991;
253
661-665
- 159
Nishisho I, Nakamura Y, Miyoshi Y et al..
Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients.
Science.
1991;
253
665-669
- 160
Groden J, Thliveris A, Samowitz W et al..
Identification and characterization of the familial adenomatous polyposis coli gene.
Cell.
1991;
66
589-600
- 161
Joslyn G, Carlson M, Thliveris A et al..
Identification of deletion mutation and three new genes at the familial polyposis
locus.
Cell.
1991;
66
601-613
- 162
Ruas M, Peters G.
The p16INK4a/CDKN2A tumor suppressor and its relatives.
Biochim Biophys Acta.
1998;
1378
F115-F177
- 163
Orlow I, Drobnjak M, Zhang Z F et al..
Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival.
J Natl Cancer Inst.
1999;
91
73-79
- 164
Hussussian C J, Struewing J P, Goldstein A M et al..
Germline p16 mutations in familial melanoma.
Nat Genet.
1994;
8
15-21
- 165
Greene M H.
The genetics of hereditary melanoma and nevi. 1998 update.
Cancer.
1999;
86
2464-2477
- 166
Knudson A G.
Mutation and cancer: statistical study of retinoblastoma.
Proc Natl Acad Sci U S A.
1971;
68
820-823
- 167
Horowitz J M, Yandell D W, Park S-H et al..
Point mutational inactivation of the retinoblastoma antioncogene.
Science.
1989;
243
937-940
- 168
Lohmann D R.
RB1 gene mutations in retinoblastoma.
Hum Mutat.
1999;
14
283-288
- 169
Cohen J A, Geradts J.
Loss of RB and MTS1/CDKN2 (p16) expression in human sarcomas.
Hum Pathol.
1997;
28
893-898
- 170
Orkin S H, Goldman D S, Sallan S E.
Development of homozygosity for chromosome 11p markers in Wilms' tumour.
Nature.
1984;
309
172-174
- 171
Weissman B E, Saxon P J, Pasquale S R et al..
Introduction of normal human chromosome into Wilms' tumor cell line controls its tumorigenic
expression.
Science.
1987;
236
175-180
- 172
Kumar-Singh S, Segers K, Rodeck U et al..
WT1 mutations in malignant mesothelioma and WT1 immunoreactivity in relation to p53
and growth factor receptor expression, cell-type transition, and prognosis.
J Pathol.
1997;
181
67-74
- 173
Barbaux S, Niaudet P, Gubler M C et al..
Donor splice-site mutations in WT1 are responsible for Frasier syndrome.
Nat Genet.
1997;
17
467-470
- 174
Pelletier J, Bruening W, Kashtan C E et al..
Germinal mutations in the Wilms' tumor suppressor gene are associated with abnormal
urogenital development in Denys-Drash syndrome.
Cell.
1991;
67
437-447
- 175
Malkin D, Li F P, Strong L C et al..
Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other
neoplasms.
Science.
1990;
250
1233-1238
- 176
Varley J M, Evans D GR, Birch J M.
Li-Fraumeni syndrome-a molecular and clinical review.
Br J Cancer.
1997;
76
1-14
- 177
Rasmussen S A, Friedman J M.
NF1 gene and neurofibromatosis 1.
Am J Epidemiol.
2000;
151
33-40
- 178
Cichowski K, Jacks T.
NF1 tumor suppressor gene function: narrowing the GAP.
Cell.
2001;
104
593-604
- 179
Colman S D, Williams C A, Wallace R W.
Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the
NF1 gene.
Nat Genet.
1995;
11
90-92
- 180
Lothe R A, Slettan A, Saeter G et al..
Alterations at chromosome 17 loci in peripheral nerve sheath tumors.
J Neuropathol Exp Neurol.
1995;
54
65-73
- 181
Gutmann D H.
Molecular insights into neurofibromatosis 2.
Neurobiol Dis.
1997;
3
247-261
- 182
Merel P, Hoang-Xuan K, Sanson M et al..
Screening for germ-line mutations in the NF2 gene.
Genes Chromosomes Cancer.
1995;
12
117-127
- 183
Bianchi A B, Mitsunaga S I, Cheng J Q et al..
High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2)
in primary malignant mesotheliomas.
Proc Natl Acad Sci U S A.
1995;
92
10854-10858
- 184
Bijlsma E K, Merel P, Bosch D A et al..
Analysis of mutations in the SCH gene in schwannomas.
Genes Chromosomes Cancer.
1994;
11
7-14
- 185
Lasota J, Fetsch J F, Wozniak A et al..
The neurofibromatosis type 2 gene is mutated in perineural cell tumors. A molecular
genetic study of eight cases.
Am J Pathol.
2001;
158
1223-1229
- 186
Biegel J A, Rorke L B, Packer R J et al..
Monosomy 22 in rhabdoid or atypical tumors of the brain.
J Neurosurg.
1990;
73
710-714
- 187
Biegel J A, Burk C D, Parmiter A H et al..
Molecular analysis of partial deletion of 22q in a central nervous system rhabdoid
tumor.
Genes Chromosomes Cancer.
1992;
5
104-108
- 188
Biegel J A, Allen C S, Kawasaki K et al..
Narrowing the critical region for the rhabdoid tumor locus in 22q11.
Genes Chromosomes Cancer.
1996;
16
94-105
- 189
Versteege I, Sevenet N, Lange J et al..
Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.
Nature.
1998;
394
203-206
- 190 Fletcher CD, Unni KK, Mertens F Pathology and Genetics of Tumours of Soft Tissue
and Bone. Lyon; IARC Press 2002
- 191
Cremer T, Lichter P, Borden J et al..
Detection of chromosome aberrations in metaphase and interphase tumor cells by in
situ hybridization using chromosome-specific library probes.
Hum Genet.
1988;
80
235-246
- 192
Pinkel D, Straume T, Gray J W.
Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization.
Proc Natl Acad Sci U S A.
1986;
83(9)
2934-2938
- 193
Cohen N, Betts D R, Trakhtenbrot L et al..
Detection of unidentified chromosome abnormalities in human neuroblastoma by spectral
karyotyping (SKY).
Genes Chromosomes Cancer.
2001;
31
201-208
- 194
Mrozek K, Iliszko M, Rys J et al..
Spectral karyotyping reveals 17;22 fusions in a cytogenetically atypical dermatofibrosarcoma
protuberans with a large marker chromosome as a sole abnormality.
Genes Chromosomes Cancer.
2001;
31
182-186
- 195
Mullis K B, Faloona F.
Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction.
Methods Enzymol.
1987;
155
335-350
- 196 Erlich H A. PCR Technology. Principles and Applications for DNA Amplification. New
York; Stockton Press 1989
- 197 McPherson MJ, Quirke P, Taylor GR PCR. A Practical Approach. New York; Oxford
University Press 1992
- 198
Downing J R, Khandekar A, Shurtleff S A et al..
Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma
and Ewing's sarcoma.
Am J Pathol.
1995;
146
626-634
- 199
Lasota J, Miettinen M.
Absence of Kaposi's sarcoma-associated virus (human herpesvirus-8) sequences in angiosarcoma.
Virchows Arch.
1999;
434
51-56
- 200
Livak K J, Flood S J, Marmaro J et al..
Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system
useful for detecting PCR product and nucleic acid hybridization.
PCR Methods Appl.
1995;
4
357-362
- 201
Peter M, Gilbert E, Delattre O.
A multiplex real-time PCR assay for the detection of gene fusions observed in solid
tumors.
Lab Invest.
2001;
81
905-912
- 202
Bijwaard K E, Fetsch J F, Przygodzki R et al..
Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real time
reverse transcriptase-polymerase chain reaction.
J Mol Diagn.
2002;
4
59-64
- 203
Joensuu H, Roberts P J, Sarlomo-Rikala M et al..
Effect of tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal
stromal tumor.
N Engl J Med.
2001;
344
1052-1056
- 204
Demetri G D.
Identification and treatment of chemoresistant inoperable or metastatic GIST: experience
with the selective tyrosine kinase inhibitor imatinib mesylate (STI571).
Eur J Cancer.
2002;
38
S52-S59
- 205
Van Glabbeke M, Verweij J, Casali P G et al..
Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors
are predicted by different prognostic factors: a European Organization for Research
and Treatment of Cancer-Italian Sarcoma Group-Australasian Gastrointestinal Trials
Group study.
J Clin Oncol.
2005;
23
5795-5804
- 206
Heinrich M C, Corless C L, Demetri G D et al..
Kinase mutations and imatinib response in patients with metastatic gastrointestinal
stromal tumor.
J Clin Oncol.
2003;
21
4342-4349
- 207
Debiec-Rychter M, Sciot R, Le Cesne A et al..
KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal
stromal tumors.
Eur J Cancer.
2006;
42
1093-1103
- 208
Antonescu C R, Besmer P, Guo T et al..
Acquired resistance to imatinib in gastrointestinal stromal tumors occurs through
secondary gene mutation.
Clin Cancer Res.
2005;
11
4182-4190
- 209
Chen L L, Trent J C, Wu E F et al..
A missense mutation in KIT domain 1 correlates with imatinib resistance in gastrointestinal
stromal tumors.
Cancer Res.
2004;
64
5913-5919
- 210
Debiec-Rychter M, Cools J, Dumez H et al..
Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and
activity of the PKC412 inhibitor against imatinib-resistant mutants.
Gastroenterology.
2005;
128
270-279
- 211
Tamborini E, Bonadiman L, Greco A et al..
A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal
stromal tumor patient.
Gastroenterology.
2004;
127
294-299
- 212
McLean S R, Gana-Weisz M, Hartzoulakis B et al..
Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense
mutation Val654Ala.
Mol Cancer Ther.
2005;
4
2008-2015
- 213
Heinrich M C, Corless C L, Blanke C D et al..
Molecular correlates of imatinib resistance in gastrointestinal stromal tumors.
J Clin Oncol.
2006;
24
4764-4774
- 214
Faivre S, Delbaldo C, Vera K et al..
Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget
tyrosine kinase inhibitor, in patients with cancer.
J Clin Oncol.
2006;
24
25-35
- 215
Joensuu H.
Second line therapies for the treatment of gastrointestinal stromal tumor.
Curr Opin Oncol.
2007;
19
353-358
- 216
Maki R G.
Recent advances in therapy for gastrointestinal stromal tumors.
Curr Oncol Rep.
2007;
9
165-169
- 217 Heinrich M C, Corless C L, Liegl B et al.. Mechanisms of sunitinib malate (SU)
resistance in gastrointestinal stromal tumors (GISTs). J Clin Oncol 2007 2007 ASCO
Annual Meeting Proceedings Part I. 25 No.18S 10006
Jerzy LasotaM.D.
Department of Soft Tissue and Orthopedic Pathology, Armed Forces Institute of Pathology
6825 16th St., N.W., Bldg. 54, Washington, DC 20306-6000
Email: lasota@afip.osd.mil